If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2+2n-760=0
a = 2; b = 2; c = -760;
Δ = b2-4ac
Δ = 22-4·2·(-760)
Δ = 6084
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6084}=78$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-78}{2*2}=\frac{-80}{4} =-20 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+78}{2*2}=\frac{76}{4} =19 $
| 7x-159=5+5x | | -3/4w=12 | | 18g-13g=10 | | 85=4u+9 | | -p=-4/12 | | y=2(2+3) | | -(-5x-5)=25 | | n^2+(n+1)^2=761 | | -7+2x+6x=-39 | | 3/7m=9/28 | | 2r+8=7 | | (Y-3)(y+1)=y^2+y-3y-3 | | 0=x^2+10x+6 | | –14=q/3 | | /z/4+8=9-z/4 | | x/16=784/25 | | (8x-40)+(3x)=180 | | -(x+3)=-13 | | 5x-2x^2=10 | | 5-2x-2=11 | | 100=t+172 | | 4/11=p/11 | | 3/4n=5/16 | | 4+n=3.75 | | -33=5(4f+9) | | a=(3)(4) | | (-6-5i)+(9+2i)=0 | | a=34 | | y/2-5y/6+⅓=1/2 | | -2(-4x+5)=3 | | 17x^2-82x+24=0 | | 3x+12=48+2x |